
Lecture 14: Universal Hash Function Family
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Recall: k-wise Independence

Recall the definition of k-wise Independent Function family. Let D
is the domain and R is the range.

Definition
Let H be a set of functions D → R. For distinct x1, x2, . . . , xkD
and any y1, y2, . . . , yk ∈ R, the class of hash function H satisfies
the following condition.

P
[
h(x1) = y1, . . . , h(xk) = yk : h← H

]
=

1

|R|k

Intuition: The first k inputs are answered independently and
uniformly at random from R.
One construction: For D = R = F a field,

H =
{
ha0,a1,...,ak−1 : a0, a1, . . . , ak−1 ∈ F

}
where ha0,a1,...,ak−1(X ) = a0 + a1X +· · ·+ ak−1X

k−1.
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2-Independence

A hash function family H is 2-Independent if it is k-wise
Independent, for k = 2
So, they satisfy the following constraint for all distinct
x1, x2 ∈ D and y1, y2 ∈ R.

P
[
h(x1) = y1, h(x2) = y2

]
=

1
|R|2
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Universal Hash Function Family

Definition (Universal Hash Function Family)

A set H of functions D → R is a universal hash function family if,
for every distinct x1, x2 ∈ D the hash function family H satisfies the
following constraint.

P
[
h(x1) = h(x2) : h

$←H
]
6

1
|R|

Intuition: Given any two distinct inputs x1 and x2, a random h
$←H

ensures that the output of h(x1) and h(x2) does not collide with
high probability
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2-wise Independence implies Universality I

Underlying Intuition: Note that if the first two inputs are
answered uniformly and independently at random by a function
then they outputs are unlikely to collide

So, can we prove the following result

Theorem
Let H be a 2-wise independent hash function family then H is also
a universal hash function family.
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2-wise Independence implies Universality II

Proof.
Since H is a 2-wise independent hash function family then it
satisfies the following condition. For distinct x1, x2 ∈ D and
any y1, y2 ∈ R we have:

P
[
h(x1) = y1, h(x2) = y2 : h

$←H
]
=

1
|R|2

Fix y2 = y1. Now, we have the guarantee

P
[
h(x1) = h(x2) = y1 : h

$←H
]
=

1
|R|2

Summing over all possible y1 ∈ R, we have∑
y1∈R

P
[
h(x1) = h(x2) = y1 : h

$←H
]
=
∑
y1∈R

1
|R|2

=
1
|R|
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2-wise Independence implies Universality III

Now, note that

P
[
h(x1) = h(x2) : h

$←H
]
=
∑
y∈R

P
[
h(x1) = h(x2) = y : h

$←H
]

=
1
|R|

(from above)

This proves that H is a universal hash function family
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Food for thought

We saw that if H is 2-wise independent then H is universal.
Does this work the other way? That is, if H is universal then
H is also 2-wise independent.
The definition of universal hash function family states that the
collision probability is 6 1

|R| . Can the collision probability be
< 1
|R|?

We will start answering both these questions simultaneously using
an example. We shall prove the formal version of this result in the
next lecture.
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Observations I

Observation
When the range R is large than the domain D, a universal hash
function family need not necessarily be 2-wise independent.

So, we need to demonstrate one counterexample H that is
universal hash function family but is not 2-wise independent

Pick any D with size > 2

Let h∗ be any one-to-one function D → R (since, R is at least
as large as D, such a function exists)

Let H = {h∗}
Note that H is a universal hash function family (because the
function is one-to-one)
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Observations II

Note that H is not a 2-wise independent hash function family.
We can choose any two distinct x1, x2 ∈ D and y1 = h∗(x1)
and y2 = h∗(x2). Now, we have

P
[
h(x1) = y1, h(x2) = y2 : h

$←H
]
= 1 66 1

|R|2
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Observations III

Observation
We can design universal hash function families H such that the
collision probability is < 1

|R| , where the range R is smaller is size
than the domain D

For such a construction we shall use D = {1, 2, 3, 4} and
R = {1, 2}
We shall use a pictorial representation for functions for brevity.
The picture below represents the function f : D → R such
that f (1) = 1, f (2) = 1, f (3) = 2, and f (4) = 2.

1
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Observations IV

Consider the three functions h1, h2, h3 defined below
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4

1

2

Define H = {h1, h2, h3}
Collision Probability. Check that the collision probability is
1
3 < 1

2 . So, this is a universal hash function family with
collision probability < 1

|R|

2-wise Independence. Pick x1 = 1, x2 = 4, y1 = 1, and y2 = 2.
Note that

P
[
h(x1) = y1, h(x2) = y2 : h

$←H
]
=

2
3
66 1

4
=

1
|R|2
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Observations V

Therefore, we have a construction of hash function family that
is universal but not 2-wise independent!

Food for Thought
What is the smallest possible achievable collision probability?
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Looking Ahead

In the next lecture, we shall prove the following result. For any
class of hash function family H, we shall prove the following bound

Theorem
Let H is a hash function family from the domain D to the range R.
We shall prove that, there exists distinct x1, x2 ∈ D such that

P
[
h(x1) = h(x2) : h

$←H
]
>

N
M − 1
N − 1

,

where |D| = N, |R| = M, and N/M > 1. Further, this bound is
achievable when M divides N.

And note that we always have
N
M
−1

N−1 < 1
M . We can show that the

class of hash functions that achieves equality in the above bound is
not a 2-wise independent hash function family!

Universal Functions


